9 Ergebnisse für: totalmodell
-
keynesianisches kreuz - Google-Suche
http://www.google.com/search?q=keynesianisches+kreuz&le=en&btnG=Google+Search&num=20&sourceid=Mozilla-search&start=0&client=fire
Keine Beschreibung vorhanden.
-
Engel Blackwell Kollat - Google-Suche
http://www.google.de/search?q=Engel+Blackwell+Kollat
Keine Beschreibung vorhanden.
-
Produktionsplanung - Klaus-Peter Kistner, Marion Steven - Google Books
http://books.google.de/books?id=E0z2i-5krXUC&pg=PA165&dq=zerrei%C3%9Flager&hl=de&ei=-b74TdOoLcPMtAa56Z2KCQ&sa=X&oi=book_result&c
Das Buch gibt einen umfassenden Überblick über den Stand und die Entwicklung der wissenschaftlichen und praktischen Ansätze zur Produktionsplanung. Nach einer Bestandsaufnahme der für die Produktionsplanung relevanten betrieblichen Tatbestände werden im…
-
-
keynesianisches kreuz - Google-Suche
http://www.google.com/search?q=keynesianisches+kreuz&le=en&btnG=Google+Search&num=20&sourceid=Mozilla-search&start=0&client=firefox-a&rls=org.mozilla:de:official
Keine Beschreibung vorhanden.
-
Revision von Neuer Keynesianismus vom Do., 07.02.2013 - 12:23 • Definition | Gabler Wirtschaftslexikon
http://wirtschaftslexikon.gabler.de/Archiv/73938/neuer-keynesianismus-v9.html
Lexikon Online ᐅRevision von Neuer Keynesianismus vom Do., 07.02.2013 - 12:23: Der Neue Keynesianismus (Neukeynesianische Makroökonomik) ist eine mikroökonomisch orientierte Theorie, die aus dem Rational- oder Maximierungsverhalten der Marktteilnehmer…
-
Isogewinnlinien - Mikroökonomie - wiwiweb.de
https://www.wiwiweb.de/mikrooekonomik/prodtech/gewimax/vorgewinmax.html
Am Gewinnmaximum eines Unternehmens tangiert die Isogewinnlinie die Produktionsfunkion. Isogewinnlinien geben alle Punkte an, die einen bestimmten Gewinn erzielen.
-
Deckungsbeitragsmodell - Kosten- und Leistungsrechnung
https://www.wiwiweb.de/kostenrechnung/berechnung/bemodelle/dbmodell.html
Das Deckungsbeitragsmodell hat gegenüber dem Umsatz-Gesamtkosten-Modell den Vorteil, dass Parameter-Veränderungen leichter zu betrachten sind.
-
Thomas Hering - FernUniversität in Hagen
http://www.fernuni-hagen.de/ls_hering/team/thomas.hering.shtml
Keine Beschreibung vorhanden.